
PHYSICAL REVIEW E 68, 031914 ~2003!
Wave nucleation rate in excitable systems in the low noise limit
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~Received 6 January 2003; published 30 September 2003!

Motivated by recent experiments on intracellular calcium dynamics, we study the general issue of
fluctuation-induced nucleation of waves in excitable media. We utilize a stochastic Fitzhugh-Nagumo model
for this study, a spatially extended nonpotential pair of equations driven by thermal~i.e., white! noise. The
nucleation rate is determined by finding the most probable escape path via minimization of an action related to
the deviation of the fields from their deterministic trajectories. Our results pave the way both for studies of
more realistic models of calcium dynamics as well as of nucleation phenomena in other nonequilibrium
pattern-forming processes.
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One very important class of nonequilibrium spatially e
tended systems is that of excitable media. In these, a qu
cent state is linearly stable but nonlinear waves can none
less propagate without decaying. These waves can
generated by above-threshold local perturbations and
also can become self-sustaining in the form of rotating s
rals @1#. Examples of excitable media include many biolog
cal systems such as the cyclic adenosine monophosp
~cAMP! waves seen in Dictyostelium amoebae aggrega
@2#, electrical waves in cardiac and neural tissue@3#, and,
primary for our focus here, intracellular calcium waves@4#.

Most excitable systems are sufficiently macroscopic a
render unimportant the role of thermodynamic fluctuatio
and allow for a description in terms of deterministic Part
Differential Equation~PDE! models. For these cases, noi
effects can still be studied via the imposition of extern
variation in time and/or space~e.g., by varying illumination
in a light-sensitive Belousov-Zhabotiusky~BZ! reaction
@5–7#!; however, there is no need to include noise in a
scription of the ‘‘natural’’ version of these systems. This
manifestly not the case for intracellular calcium dynami
since the excitability here arises through the opening
closing of a small number of ion channels~allowing/
preventing calcium efflux from calcium stores@8#!, fluctua-
tions are inherently nonnegligible. Indeed, experiments sh
direct evidence of noise effects in the form of abortive wav
and spontaneous wave nucleation@9,10#. The mechanism
leading to the nucleation of a calcium wave can be descri
as follows: A stochastic opening of some channels lead
an increased calcium concentration that favors the ope
of additional channels. This activation will spread via diff
sion and initiate a self-sustaining Ca21 excitation wave. One
could study this by using a very detailed model of calciu
kinetics @11,12#, but a general understanding should be o
tainable using well-studied generic models for this type
stochastic excitable media, such as the Fitzhugh-Nagu
equations@13,14#.

Thus, we study the process of spontaneous wave nu
ation for a 1d excitable system modeled by the Fitzhug
Nagumo equations.

] tu5~3u2u32v !/e1¹2u1hu , ~1!
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where hv and hu are noise terms. The particular form o
these terms that would arise in a realistic model of intrac
lular calcium dynamics, as derived from a stochastic rep
sentation of release sites, will clearly involve multiplicativ
noise. Their exact form depends on the particular stocha
model used and is beyond the scope of this study~it will be
addressed in further work!. Here, for the sake of simplicity
we choosehv and hu to be small independent white nois
terms modeling fluctuation effects with covariance equal

^h i~x,t !h j~x8,t8!&5bd i j d~x2x8!d~ t2t8!. ~3!

At b50 and for positive values ofg, this system is excitable
with a single stable equilibrium pointu052(11g),v0

53u02u0
3. As already mentioned, a wave of excitation c

propagate through the system~see Fig. 1!; a counter-
propagating pair of such waves will be generated if a lo
perturbation above a threshold value is applied. For nega
values ofg, the system becomes oscillatory. As already m

FIG. 1. Left: phase space diagram of the Fitzhugh-Nagumo s
tem without noise and without the diffusive term. The stable eq
librium point is O. The f (u,v)53u2u32v nullcline is the S
shaped solid line with minimum atM and the g5u1(11g)
nullcline is the thin solid line. A small perturbation ofO leads to a
large excursion in phase space. The dashed line shows the p
space excursion of a point during the propagation of a single wa
Parameter values areg50.5 ande50.05. Right: Typical propagat-
ing wave in an excitable medium. Solid line:u; dashed line:v. The
widths of the wave front and wave back@regions of fast change in
u where (u, v) is not on thef nullcline# are of orderAe. The full
return to equilibrium is not shown.
©2003 The American Physical Society14-1
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tioned, this model is not meant to be a realistic approxim
tion for calcium dynamics in any specific biological conte
instead we use the model to understand the generic fea
of calcium wave nucleation due to noise.

Specifically, at finiteb the noise will allow the birth of
pairs of counter-propagating wave at a rate that will dep
on the amplitude of the noise. That rate can be determine
the case of relatively high noise using direct numerical sim
lations. However, in the case of low noise, such a meth
becomes computationally prohibitive. Here we presen
computation of the transition rate using a most probable
cape path~MPEP! approach that is based on solving t
Fokker-Planck equation@15,16#. This method has been suc
cessfully applied to dynamical systems@17,18# and to a few
cases of spatially extended systems, namely the trans
from creep to fracture@19# and magnetic domain revers
@20,21#. To derive the equation for the MPEP, we use the f
that the solution of the Fokker-Planck equation with giv
initial and final field configurations for time interval@0,T#
can be written in terms of the path integral

P~T!5E DuDvexpS 2
1

bE E dtdx S~x,t ! D , ~4!

with the ‘‘action density’’S given by the sum of the square
deviations of the time derivatives of the fields from the
deterministic values:S[du

21dv
2 , where

du5] tu2~3u2u32v !/e2Du, ~5!

dv5] tv2u2~11g!. ~6!

The functional integral is taken over all paths that begin
t50 in equilibrium and end with a given final counte
propagating wave state (uf ,v f) at t5T. Since we takeb
close to 0, the right-hand side of Eq.~4! is dominated by the
path ~called MPEP! that maximizes the integrand over a
paths; thus, the transition rate is found to be proportiona

exp~2E/b!, ~7!

whereE is the minimum over all paths of*dx*dt S. There-
fore, in order to compute the transition rate between the
state and a pair of counter-propagating waves, one has
to compute the minimum of the quantity in Eq.~4!. This
minimum can be expressed using a variational principle
the solution of a partial differential equation~PDE! @22#;
however, using this approach to find the actual MPEP
tween two different states involves the use of a shoot
method with numerous parameters, which turns out to
numerically quite difficult. Instead, we used an alternat
method based on discretizing the above path integral o
space-time grid and directly using a quasi-Newton@23#
method to find the minimum. One difficulty with this ap
proach is that the Fitzhugh-Nagumo model has a slow rec
ery time compared to the time scale associated with a p
@~width of pulse!/speed#. This then necessitates having a ve
large spatial domain, if one attempts to completely enco
pass the region over which the nucleated wave configura
differs from the quiescent fixed point. To get around th
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difficulty, we use a grid moving with the pulse. That is, th
grid moves in the same direction as the pulse in order to k
the wave front at a fixed distance from the boundary. Th
the boundaries of the domain used to compute the MPEP
no longer @0,L#, @0,T#, but @xmin(t)501max„xf(t)
2xo f f,0…,xmax(t)5L1max„xf(t)2xo f f,0…#, @0,T#, where
xf(t) is the position of the wave front defined as the po
whereu goes above 0 andxo f f is an arbitrary value lower
than L and significantly bigger than the width of the wav
front. The following boundary conditions are applied:

at x5xmax~ t !:u5u0 , v5v0 ,

at x5xmin~ t !H ]xu~0!50 if xmin~ t !50

du~0!50 if xmin~ t !Þ0.
~8!

The conditiondu50 implies that the recovery pastxmin is
purely deterministic and hence does not contribute toE. A
check on our procedure is afforded by the fact that as long
the distance the wave had traveled~in the final state! is sig-
nificantly bigger than the region over which the wave in
tiates, the results obtained are independent of both the
tance the wave had traveled and the width of the sp
window used (L). We fix T to be large enough that th
deviation from deterministic dynamics for very small time
negligible. OnceT is fixed and the specific final wave sta
chosen, there is no time-translation invariance in the MP

We now describe the results obtained using this meth
ology. In the smalle limit ( e,0.1), the shape of the MPEP
is quantitatively independent ofe and g and even for high
values ofe, there is no significant qualitative difference.
Fig. 2, we present such a typical escape path. As shown

FIG. 2. Space time contour plot of theu ~right! andv ~left! field
during nucleation withT520; parameter values aree50.1 andg
50.2. Time increases upward and the white area corresponds t
region outside of @xmin(t)5max„xf(t)2xo f f,0…;xmax(t)5max„L
1xf(t)2xo f f,0…#,@0,T#. The contours are at -2, -1, 0, and 1 for th
u field and atv020.2, v020.05, v010.05, v011, v012, andv0

13 for thev field. The lighter the surface, the higher the values
the fields are; thus, the light region of theu contour plot corre-
sponds to the excited region. After the nucleation event, points n
the center reach the maximum of the excited branch of thf
nullcline ~see Fig. 1!, return to the quiescent state and thereby g
birth to the two wave backs.
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the contour plots, wave nucleation is found to be a v
localized event. Essentially, the noise acts to create a l
dip in value of thev field which is then followed by a large
positive excursion for theu field as it goes into the excite
phase. To describe this mechanism more fully, we presen
Fig. 3 the phase-plane trajectory at the center of nuclea
as well as several snapshots of the spatial form of the fi
during the nucleation process. One can see then that th
cape path consists of the center of nucleation being driven
noise below the minimum of thef nullcline; this then quickly
drives theu field positive and leads afterv-field driven re-
laxation, to the pair of counter-propagating pulses. There
significant fluctuation contribution to the nucleation event
a small region around the nucleation point~see Fig. 4!. Re-
sults using different values ofg ande show that the width of
this small region is proportional to the width of a front, th
is Ae ~see Fig. 5!. Note that the other simple possibility tha
of nucleating an excited region for theu field at a fixed value
of v @24# is not observed.

In accord with the shape of the trajectory, our calculatio

FIG. 3. ~a! and ~b! v profiles during a typical nucleation even
~a! v profiles at times 25, 25.5, 26, 26.5, 27, 27.5, and 28. Dur
that stage, the minimal value of thev field decreases.~b! v profiles
at times 28~dashed!, 28.25, 28.5, 28.75, and 29~solid lines!. Dur-
ing this stage, the minimal value ofv increases.~c! u profiles at the
same times. The profiles corresponding to the~a! and~b! curves are
represented with a solid, dashed line.~d! The dashed line represen
the f nullcline. The thick solid line is the trajectory in the pha
plane@u(x50,t),v(x50,t)# of the center of nucleation. The poin
where maximum value of*dx(du

21dv
2) is reached is indicated by

thick arrow, whereas the point where this deviation is below 1%
this maximal value is indicated by the thin arrow. Beyond this po
the dynamics are mainly driven by the deterministic equations.
thin solid lines represent spatial snapshots of the MPEP@u(x,t
5Ti),v(x,t5Ti)# profile at regularly spaced points in time (Ti

2Ti 2150.5).
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show that the main contribution toE during the MPEP come
from the**dv

2 , at least for small values ofe—this is true for
all g although there is a~weak! g dependence. Thus forg
50.2 the value of the ratio**dv

2/**du
2 was approximately

30 for e50.1, and went up to 1000 for the minimal value
e used (e50.001). For higher values ofe, the ratio was
significantly lower~3 for e50.8, close to the limit of propa-
gation for this value ofg). Furthermore for smalle, E scales
like Ae ~see Fig. 5!. For higher values ofe, this simple

g

f
t
e

FIG. 4. Parameter values aree50.1 andg50.2. ~a! Space time
contour plot of the action densitydu

21dv
2 with its maximal value

normalized to one. The contours are at 1/96, 1/48, 1/24, 1/12,
1/3, and 1/1.5.~b! Spatial distribution@*dt(du

21dv
2)# of the contri-

bution to log10(E) during the MPEP.~c! Temporal distribution
@*dx(du

21dv
2)# of the contribution to log10(E) during the MPEP.

One can see that the contribution toE as a function of time in-
creases exponentially and then decreases rapidly to a very low
that is close to numerical noise.

FIG. 5. Left: circles log10e dependence of log10E using a log
scale, solid line:y5x/220.8. For smalle, E behaves likeAe.
Right: circlesg dependence ofAE for e50.1. Solid,y51.2x. E
behaves likeg2 for a wide range of values ofg. The scaling breaks
down for higher values ofg, close to the propagation threshold~for
this value ofe, the threshold is atg50.552560.0005).
4-3
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scaling is no longer valid. The fact that for small values ofe,
E scales likeAe and that a wave is therefore much easier
nucleate can be explained by a simple argument. As alre
mentioned, the phase-plane trajectory of the MPEP is ma
independent of the value ofe. The only dependence is the
due to the spatial scale appearing in the integral which isAe,
giving rise to the observed result.

We now describe results obtained when varyingg with e
held constant. This means that we consider the nuclea
rates for differing excitabilities but with the same ratio
time scales between theu andv field dynamics. For a wide
range of values ofg, we find thatE scales likeg2 ~see Fig.
5!. The more excitable the system, the more likely it is
nucleate a wave. This scaling is the same as one would
tain analytically in the much simpler zero-dimensional~0D!
version of this problem. Here the analog of wave nucleat
is the noise-induced creation of a large transient excurs
away from the fixed point. Ife is small, the escape path wi
follow the f nullcline down to its minimum and then follow
the noiseless dynamics to reach the other stable branc
such a situation, one can compute the transition rate ana
cally in a piecewise linear version of the FH model@25#:

u̇5H 2
1

e
~v1u! if u,0,

1

e
~12v2u! if u>0,

~9!

v̇5u1g. ~10!

In this model, the equilibrium point isu052g, v05g. The
branch u,0, u1v50, corresponds to the left hand sid
branch of f (u,v)50 in the phase diagram of the 0D F
system~see Fig. 1!, the pointu5v50 corresponds to the
minimum of this branch and the branchu.0, u1v51 cor-
responds to the right hand side branch of thef nullcline in
Fig. 1. A long excursion in the phase space will occur
soon asu becomes positive. Sincee is taken to be small, the
path that minimizes the action follows the analog of the l
hand side branch of thef nullcline, that is, the line of equa
tion u1v50 from the equilibrium point to the point whereu
becomes positive. This allows us to eliminate the contri
tion of the deviation from the deterministic equation gove
ing the evolution ofu in the action of the escape path and
consider that the system remains on the line of equatiou
1v50 ~note that this latter assumption is only valid as lo
as the time scale of the escape path is much longer than
characteristic time scale of the evolution equation ofu).

Then it can be easily shown that the variational equat
for the MPEP has the form
al
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5v2g, ~11!

with v(0)5v05g andv(T)50. A straightforward calcula-
tion shows that the action is equal to

g2
2

12exp~22T!
~12!

and that its minimum, reached forT5`, is equal to 2g2.
This result obtained from a zero-dimensional approa
shows that theg2 scaling ofE found in our computations can
be interpreted as being due tog equaling the ‘‘distance’’ of
the stable equilibrium point from the border of its basin
attraction or the distance of the system from an oscillat
system since forg50, the FH system undergoes a Ho
bifurcation and becomes oscillatory.

Putting it all together, our data yield a log transition ra
decreasing linearly with2g2Ae/b. This result could be
tested experimentally, perhaps by adding illumination no
to the light-sensitive BZ reaction. In the case of the intrac
lular calcium dynamics, despite the loose connection
tween the FH model parameters and the parameters gov
ing the behavior of intracellular Calcium, our results can
used in the vicinity of the transition from an excitable regim
to an oscillatory regime. Indeed, in this situation, the para
eter g being the distance between the system and the H
bifurcation point, can be linked to the IP3 concentrati
which likewise governs the transition to an oscillatory r
gime.

It is worth mentioning that there are other potential app
cations of the MPEP approach to nucleation in spatially
tended nonequilibrium systems. One example concerns
thermal generation of localized patches of traveling rolls
electroconvection@26#. Also, the method used here is n
limited to white noise. A simple generalization of the deriv
tion allows for the incorporation of multiplicative noise vi
dividing the du

2 and dv
2 terms in the action density by th

corresponding~possibly field dependent! variances of the
noises added to theu andv equations, respectively. Finally
there is a similarity between the MPEP method and w
must be done to consider quantum tunneling in spatially
tended systems@27#, where one also must find the entir
space-time path tunneling trajectory in order to find a lead
estimate of the rate.
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