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Wave nucleation rate in excitable systems in the low noise limit
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Motivated by recent experiments on intracellular calcium dynamics, we study the general issue of
fluctuation-induced nucleation of waves in excitable media. We utilize a stochastic Fitzhugh-Nagumo model
for this study, a spatially extended nonpotential pair of equations driven by théirmalwhite noise. The
nucleation rate is determined by finding the most probable escape path via minimization of an action related to
the deviation of the fields from their deterministic trajectories. Our results pave the way both for studies of
more realistic models of calcium dynamics as well as of nucleation phenomena in other nonequilibrium
pattern-forming processes.
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One very important class of nonequilibrium spatially ex- du=u+(1+y)+mn,, 2
tended systems is that of excitable media. In these, a quies-
cent state is linearly stable but nonlinear waves can nonethavhere 5, and 5, are noise terms. The particular form of
less propagate without decaying. These waves can biese terms that would arise in a realistic model of intracel-
generated by above-threshold local perturbations and thedular calcium dynamics, as derived from a stochastic repre-
also can become self-sustaining in the form of rotating spisentation of release sites, will clearly involve multiplicative
rals[1]. Examples of excitable media include many biologi- noise. Their exact form depends on the particular stochastic
cal systems such as the cyclic adenosine monophosphateodel used and is beyond the scope of this stidyill be
(cCAMP) waves seen in Dictyostelium amoebae aggregatiomddressed in further workHere, for the sake of simplicity
[2], electrical waves in cardiac and neural tis§8¢ and, we choosez, and 7, to be small independent white noise
primary for our focus here, intracellular calcium wayéds$ terms modeling fluctuation effects with covariance equal to

Most excitable systems are sufficiently macroscopic as to
render unimportant the role of thermodynamic fluctuations (mi(X, 1) p(X",t"))= B8 6(x—x")6(t—t"). (©)]
and allow for a description in terms of deterministic Partial
Differential Equation(PDE) models. For these cases, noise At =0 and for positive values of, this system is excitable
effects can still be studied via the imposition of externalwith a single stable equilibrium pointip=—(1+y),vq
variation in time and/or space.g., by varying illumination =3uy—u3. As already mentioned, a wave of excitation can
in a light-sensitive Belousov-Zhabotiusk{BZ) reaction propagate through the systeisee Fig. 1 a counter-
[5-7]); however, there is no need to include noise in a depropagating pair of such waves will be generated if a local
scription of the “natural” version of these systems. This is perturbation above a threshold value is applied. For negative
manifestly not the case for intracellular calcium dynamics;values ofy, the system becomes oscillatory. As already men-
since the excitability here arises through the opening and
closing of a small number of ion channelsllowing/ 25 2
preventing calcium efflux from calcium storgg]), fluctua-
tions are inherently nonnegligible. Indeed, experiments show
direct evidence of noise effects in the form of abortive wavesy |
and spontaneous wave nucleatif®10]. The mechanism
leading to the nucleation of a calcium wave can be describec
as follows: A stochastic opening of some channels leads ta g<0
an increased calcium concentration that favors the opening 22,5
of additional channels. This activation will spread via diffu-
sion and initiate a self-sustaining Caexcitation wave. One
could study this by using a very detailed model of calcium
kinetics [11’.12]’ but a general und_erstanding shoqld be Ob;Jibrium point is O. The f(u,v)=3u—u®*-v nullcline is the S
tainable using .weII—studle.d generic models }‘or this type Oshaped solid line with minimum aM and the g=u-+ (1+7)
stochastic excitable media, such as the I:'chl“'gh'Naguml‘?ullcline is the thin solid line. A small perturbation 6f leads to a

equationg 13,14, large excursion in phase space. The dashed line shows the phase-
‘Thus, we study the process of spontaneous wave nuclgpace excursion of a point during the propagation of a single wave.
ation for a I excitable system modeled by the Fitzhugh- parameter values ane=0.5 ande=0.05. Right: Typical propagat-
Nagumo equations. ing wave in an excitable medium. Solid ling: dashed linev. The
widths of the wave front and wave baftegions of fast change in
u where @, v) is not on thef nullcling] are of orderye. The full
du=3u—ud—v)/e+Vau+yp,, (1)  return to equilibrium is not shown.

FIG. 1. Left: phase space diagram of the Fitzhugh-Nagumo sys-
tem without noise and without the diffusive term. The stable equi-
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tioned, this model is not meant to be a realistic approxima- v u

tion for calcium dynamics in any specific biological context; v

instead we use the model to understand the generic features
of calcium wave nucleation due to noise.
Specifically, at finite@ the noise will allow the birth of

pairs of counter-propagating wave at a rate that will depend
on the amplitude of the noise. That rate can be determined in
the case of relatively high noise using direct numerical simu- t
lations. However, in the case of low noise, such a method
becomes computationally prohibitive. Here we present a
computation of the transition rate using a most probable es-
cape path(MPEP approach that is based on solving the
Fokker-Planck equatiofil5,16. This method has been suc-
cessfully applied to dynamical systeifis7,18 and to a few
cases of spatially extended systems, namely the transition
from creep to fractur¢19] and magnetic domain reversal
20,21]. To derive the equation for the MPEP, we use the fac T .
'Ehat tﬁe solution of thtg1 Fokker-Planck equation with givenrzeoi'gr'] Tw;uet;?dcerea;:e FXUPV(\/t?rZCirT?:;)(tFE?)VXl:(Ite %r)?i Cirt;e_sr?](;:(df tothe
initial and final field configurations for time intervgD,T] +§f(t)7xoff,0)],[0,T]. e contoLrs are a(t)f-fé, '170, and 1 for the
can be written in terms of the path integral ufield and atog— 0.2, vo—0.05, v+ 0.05, vo+ 1, vo+2, andu

1 + 3 for thev field. The lighter the surface, the higher the values of

P(T):f DuDvex% __f f dtdx S{X,t)), (4) the fields are; thus, the light region of thecontour plot corre-
B sponds to the excited region. After the nucleation event, points near
the center reach the maximum of the excited branch of fthe

with the “action density”Sgiven by the sum of the squared pyjicline (see Fig. 1, return to the quiescent state and thereby give
deviations of the time derivatives of the fields from their pjrth to the two wave backs.

deterministic valuesS= 82+ &2, where

FIG. 2. Space time contour plot of theright) andv (left) field
Puring nucleation withT =20; parameter values aee=0.1 andy

difficulty, we use a grid moving with the pulse. That is, the

— 3
Su=diu—(3u—u’—v)/e—Au, (®  grid moves in the same direction as the pulse in order to keep
_ the wave front at a fixed distance from the boundary. Thus,
Sy=dw—u—(1+7y). ) the boundaries of the domain used to compute the MPEP are

The functional integral is taken over all paths that begin alrlo Iogger [S_I‘E+ [O’T]’t t_’Ut [)(;mm(t)=00_4rrmax(xrf](t)
t=0 in equilibrium and end with a given final counter- _ off ) Xma(t) =L +max(x(t) =Xor,0)], [0T], where

propagating wave statauf,vs) att=T. Since we take8 X(t) is the position of the wave front defined as the point

: : ; ; hereu goes above 0 ang,;; is an arbitrary value lower
close to 0, the right-hand side of E@) is dominated by the > . off :
path (called MPI%F? that maximizi@)the integrand 0\)//er all thanL and significantly bigger than the width of the wave

paths; thus, the transition rate is found to be proportional tJront. The following boundary conditions are applied:

exp(—E/B), ) at X=Xma(t):u=Up, v=0y,

whereE is the minimum over all paths gfdx/dt S. There- at X=X (1) Hu(0)=0 if Xpin(t)=0 ®

fore, in order to compute the transition rate between the rest M16,(0)=0 if  Xpn(t) #0.

state and a pair of counter-propagating waves, one has only

to compute the minimum of the quantity in EGd). This  The conditiond,=0 implies that the recovery pagt,, is
minimum can be expressed using a variational principle apurely deterministic and hence does not contributété\

the solution of a partial differential equatio?DE) [22]; check on our procedure is afforded by the fact that as long as
however, using this approach to find the actual MPEP bethe distance the wave had travelgd the final statgis sig-
tween two different states involves the use of a shootingificantly bigger than the region over which the wave ini-
method with numerous parameters, which turns out to bdiates, the results obtained are independent of both the dis-
numerically quite difficult. Instead, we used an alternativetance the wave had traveled and the width of the space
method based on discretizing the above path integral on window used [). We fix T to be large enough that the
space-time grid and directly using a quasi-Newt@8]  deviation from deterministic dynamics for very small time is
method to find the minimum. One difficulty with this ap- negligible. OnceT is fixed and the specific final wave state
proach is that the Fitzhugh-Nagumo model has a slow recowehosen, there is no time-translation invariance in the MPEP.
ery time compared to the time scale associated with a pulse We now describe the results obtained using this method-
[(width of pulse/speed. This then necessitates having a very ology. In the smalle limit (€<0.1), the shape of the MPEP
large spatial domain, if one attempts to completely encomis quantitatively independent @&f and v and even for high
pass the region over which the nucleated wave configuratiomalues ofe, there is no significant qualitative difference. In
differs from the quiescent fixed point. To get around thisFig. 2, we present such a typical escape path. As shown on
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FIG. 3. (a) and(b) v profiles during a typical nucleation event. FIG. 4. Parameter values a¢te=0.1 andy=0.2. (a) Space time
(a) v profiles at times 25, 25.5, 26, 26.5, 27, 27.5, and 28. Duringcontour plot of the action density2+ 62 with its maximal value
that stage, the minimal value of thefield decreasegb) v profiles  normalized to one. The contours are at 1/96, 1/48, 1/24, 1/12, 1/6,
at times 28(dashedl 28.25, 28.5, 28.75, and 28olid lineg. Dur-  1/3, and 1/1.5(b) Spatial distributior] [ dt( 52+ &%)] of the contri-
ing this stage, the minimal value ofincreases(c) u profiles atthe  bution to log(E) during the MPEP.(c) Temporal distribution
same times. The profiles corresponding to @eand(b) curves are [ [dx(&8;+ 62)] of the contribution to logy(E) during the MPEP.
represented with a solid, dashed litd). The dashed line represents One can see that the contribution Boas a function of time in-
the f nulicline. The thick solid line is the trajectory in the phase creases exponentially and then decreases rapidly to a very low level
plane[u(x=0.),v(x=0,t)] of the center of nucleation. The point that is close to numerical noise.
where maximum value of dx( 6ﬁ+ 55) is reached is indicated by a
thick arrow, whereas the point where this deviation is below 1% ofshow that the main contribution ® during the MPEP come
this maximal value is indicated by the thin arrow. Beyond this pointfrom the [ [ 55 , at least for small values af—this is true for
th_e dyngml_cs are mainly drlven_by the deterministic equations. They| y although there is @weak y dependence. Thus foy
thin solid lines repre§ent spatial snapshots of .the !\/IH?E@(,I =0.2 the value of the raticffé,f/ff 55 was approximately
:P'USBBT‘)] profile at regularly spaced points in timé;( 30 for e=0.1, and went up to 1000 for the minimal value of
e € used €=0.001). For higher values of, the ratio was
significantly lower(3 for e=0.8, close to the limit of propa-

the contour plots, wave nucleatloq is found to be a very ation for this value ofy). Furthermore for smak, E scales
localized event. Essentially, the noise acts to create a Ioczﬂ(

dip in value of thev field which is then followed by a large ke \e (see Fig. 5. For higher values ok, this simple
positive excursion for the field as it goes into the excited

phase. To describe this mechanism more fully, we present ir

Fig. 3 the phase-plane trajectory at the center of nucleatior

as well as several snapshots of the spatial form of the fields
during the nucleation process. One can see then that the e _4 5
cape path consists of the center of nucleation being driven bys
noise below the minimum of thienullcline; this then quickly — —
drives theu field positive and leads after-field driven re-

P 0.2

laxation, to the pair of counter-propagating pulses. Thereis¢ _s5

significant fluctuation contribution to the nucleation event in -3
a small region around the nucleation pofsee Fig. 4 Re-

sults using different values aof ande show that the width of

-2
log(e)

-1

0.2

Y

04

FIG. 5. Left: circles logye dependence of lqge using a log

this small region is proportional to the width of a front, that scale, solid line:y=x/2—0.8. For smalle, E behaves like\/e.
is \/e (see Fig. 5. Note that the other simple possibility that Right: circlesy dependence of/E for e=0.1. Solid,y=1.2x. E

of nucleating an excited region for thefield at a fixed value
of v [24] is not observed.

In accord with the shape of the trajectory, our calculationghis value ofe, the threshold is ay=0.5525+0.0005).
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behaves likey? for a wide range of values of. The scaling breaks
down for higher values of, close to the propagation threshdfdr
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scaling is no longer valid. The fact that for small values of d2v

E scales likeye and that a wave is therefore much easier to —=v
nucleate can be explained by a simple argument. As already dt
mentioned, the phase-plane trajectory of the MPEP is mainly .
independent of the value @ The only dependence is then With v(0)=vo=7y andv(T)=0. A straightforward calcula-
due to the spatial scale appearing in the integral whicleis tion shows that the action is equal to

- (ll)

giving rise to the observed result. 5
We now describe results obtained when varyjnwith e e (12)
held constant. This means that we consider the nucleation 1-exp(—2T)

rates for differing excitabilities but with the same ratio of

. . . 5
time scales between theandu field dynamics. For a wide and that its minimum, reached fdr=c, is equal to 3",
range of values oy, we find thatE scales likey? (see Fig. This result obtained from a zero-dimensional approach

5). The more excitable the system, the more likely it is toShOWs that the/ scaling ofE found in our computations can
nucleate a wave. This scaling is the same as one would o€ interpreted as being due joequaling the “distance” of
tain analytically in the much simpler zero-dimensidoa)) the stgble equmbn_um point from the border of its ba§|n of
version of this problem. Here the analog of wave nucleatiorfitraction or the distance of the system from an oscillatory
is the noise-induced creation of a large transient excursiofiyStem since fory=0, the FH system undergoes a Hopf
away from the fixed point. It is small, the escape path will bifurcation and becomes oscillatory. -
follow the f nullcline down to its minimum and then follow ~ Putting it all together, our data yield a log transition rate
the noiseless dynamics to reach the other stable branch. figcreasing linearly with—y?\/e/8. This result could be
such a situation, one can compute the transition rate analytiested experimentally, perhaps by adding illumination noise
cally in a piecewise linear version of the FH mo(i25]: to the light-sensitive BZ reaction. In the case of the intracel-
lular calcium dynamics, despite the loose connection be-
1 . tween the FH model parameters and the parameters govern-
. - ;(U+u) if u<0, ing the behavior of intracellular Calcium, our results can be
u= 9 used in the vicinity of the transition from an excitable regime
1(1_1) —u) if u=0, to an osc_illatory regime. Indeed, in this situation, the param-
€ eter y being the distance between the system and the Hopf
_ bifurcation point, can be linked to the IP3 concentration
v=u+y. (10 which likewise governs the transition to an oscillatory re-
: I o gime.
In this model, the equilibrium point igg=—, vo=1y. The It is worth mentioning that there are other potential appli-
branchu<0, u+v=0, corresponds to the left hand side cations of the MPEP approach to nucleation in spatially ex-
branch off(u,v)=0 in the phase diagram of the 0D FH tended nonequilibrium systems. One example concerns the
system(see Fig. ], the pointu=v=0 corresponds to the thermal generation of localized patches of traveling rolls in
minimum of this branch and the branob»0, u+v=1 cor-  electroconvectior{26]. Also, the method used here is not
responds to the right hand side branch of theulicline in  |imited to white noise. A simple generalization of the deriva-
Fig. 1. A long excursion in the phase space will occur asjon allows for the incorporation of multiplicative noise via
soon adl becomes positive. Sinaeis taken to be small, the dividing the 52 and 8% terms in the action density by the
path that minimizes the action follows the analog of the leftcorresponding(possibly field dependentvariances of the
hand side branch of thienullcline, that is, the line of equa- nojses added to the andv equations, respectively. Finally,
tion u+v =0 from the equilibrium point to the pointwhee®  there is a similarity between the MPEP method and what
becomes positive. This allows us to eliminate the contribumyst be done to consider quantum tunneling in spatially ex-
tion of the deviation from the deterministic equation govern-tenged system§27], where one also must find the entire

ing the evolution ol in the action of the escape path and to space-time path tunneling trajectory in order to find a leading
consider that the system remains on the line of equation gstimate of the rate.

+v =0 (note that this latter assumption is only valid as long
as the time scale of the escape path is much longer than the It is a pleasure to acknowledge useful discussions with D.

characteristic time scale of the evolution equatiorupf Kessler. This research was supported by the NSF through
Then it can be easily shown that the variational equatiorGrant No. DMR-0101793 and through the Physics Frontier
for the MPEP has the form Center program.
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